Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.187
Filtrar
1.
Elife ; 122024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656297

RESUMO

Telomeres, which are chromosomal end structures, play a crucial role in maintaining genome stability and integrity in eukaryotes. In the baker's yeast Saccharomyces cerevisiae, the X- and Y'-elements are subtelomeric repetitive sequences found in all 32 and 17 telomeres, respectively. While the Y'-elements serve as a backup for telomere functions in cells lacking telomerase, the function of the X-elements remains unclear. This study utilized the S. cerevisiae strain SY12, which has three chromosomes and six telomeres, to investigate the role of X-elements (as well as Y'-elements) in telomere maintenance. Deletion of Y'-elements (SY12YΔ), X-elements (SY12XYΔ+Y), or both X- and Y'-elements (SY12XYΔ) did not impact the length of the terminal TG1-3 tracks or telomere silencing. However, inactivation of telomerase in SY12YΔ, SY12XYΔ+Y, and SY12XYΔ cells resulted in cellular senescence and the generation of survivors. These survivors either maintained their telomeres through homologous recombination-dependent TG1-3 track elongation or underwent microhomology-mediated intra-chromosomal end-to-end joining. Our findings indicate the non-essential role of subtelomeric X- and Y'-elements in telomere regulation in both telomerase-proficient and telomerase-null cells and suggest that these elements may represent remnants of S. cerevisiae genome evolution. Furthermore, strains with fewer or no subtelomeric elements exhibit more concise telomere structures and offer potential models for future studies in telomere biology.


Assuntos
Sequências Repetitivas de Ácido Nucleico , Saccharomyces cerevisiae , Telomerase , Telômero , Saccharomyces cerevisiae/genética , Telômero/metabolismo , Telômero/genética , Sequências Repetitivas de Ácido Nucleico/genética , Telomerase/genética , Telomerase/metabolismo , Homeostase do Telômero , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência
2.
Nat Commun ; 15(1): 2165, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461301

RESUMO

The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function.


Assuntos
Neoplasias , Estruturas R-Loop , RNA Longo não Codificante , Homeostase do Telômero , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , 60422 , RNA Longo não Codificante/genética , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero/genética , Humanos
3.
Biochem Biophys Res Commun ; 707: 149768, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38489874

RESUMO

DNA mismatch repair (MMR) is a crucial mechanism that ensures chromosome stability and prevents the development of various human cancers. Apart from its role in correcting mismatches during DNA replication, MMR also plays a significant role in regulating recombination between non-identical sequences, a process known as homeologous recombination. Telomeres, the protective ends of eukaryotic chromosomes, possess sequences that are not perfectly homologous. While telomerase primarily maintains telomere length in the yeast Saccharomyces cerevisiae, recombination between telomeres becomes a major pathway for length maintenance in cells lacking telomerase. This study investigates the participation of MMR in telomere recombination. Our findings reveal that mutations in MMR genes activate type I recombination. Notably, among the MMR proteins, MutSα (Msh2 and Msh6) and MutLα (Mlh1 and Pms1) exerted the most pronounced effects on telomere recombination. We also found that yeast cells containing simple human telomeric TTAGGG DNA sequences preferentially utilize type II recombination to maintain their telomeres, highlighting the influence of the heterogeneous nature of yeast telomeric sequences on type II recombination. Furthermore, our observations indicate that MMR activity is indispensable for its impact on telomere recombination. Collectively, these results contribute to a more comprehensive understanding of the role of MMR in telomere recombination.


Assuntos
Proteínas de Saccharomyces cerevisiae , Telomerase , Humanos , Reparo de Erro de Pareamento de DNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telomerase/genética , Telomerase/metabolismo , Homeostase do Telômero/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telômero/genética , Telômero/metabolismo
5.
JMIR Public Health Surveill ; 10: e46019, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194261

RESUMO

BACKGROUND: Physical exercise is one of the main nonpharmacological treatments for most pathologies. In addition, physical exercise is beneficial in the prevention of various diseases. The impact of physical exercise has been widely studied; however, existing meta-analyses have included diverse and heterogeneous samples. Therefore, to our knowledge, this is the first meta-analysis to evaluate the impact of different physical exercise modalities on telomere length in healthy populations. OBJECTIVE: In this review, we aimed to determine the effect of physical exercise on telomere length in a healthy population through a meta-analysis of randomized controlled trials. METHODS: A systematic review with meta-analysis and meta-regression of the published literature on the impact of physical exercise on telomere length in a healthy population was performed. PubMed, Cochrane Library, SCOPUS, Web of Science, and Embase databases were searched for eligible studies. Methodological quality was evaluated using the Risk Of Bias In Nonrandomized Studies of Interventions and the risk-of-bias tool for randomized trials. Finally, the certainty of our findings (closeness of the estimated effect to the true effect) was evaluated using Grading of Recommendations, Assessment, Development, and Evaluations (GRADE). RESULTS: We included 9 trials that met the inclusion criteria with fair methodological quality. Random-effects model analysis was used to quantify the difference in telomere length between the exercise and sham groups. Meta-analysis showed that exercise did not significantly increase telomere length compared with the control intervention (mean difference=0.0058, 95% CI -0.05 to 0.06; P=.83). Subgroup analysis suggested that high-intensity interventional exercise significantly increased telomere length compared with the control intervention in healthy individuals (mean difference=0.15, 95% CI 0.03-0.26; P=.01). Furthermore, 56% of the studies had a high risk of bias. Certainty was graded from low to very low for most of the outcomes. CONCLUSIONS: The findings of this systematic review and meta-analysis suggest that high-intensity interval training seems to have a positive effect on telomere length compared with other types of exercise such as resistance training or aerobic exercise in a healthy population. TRIAL REGISTRATION: PROSPERO CRD42022364518; http://tinyurl.com/4fwb85ff.


Assuntos
Exercício Físico , Nível de Saúde , Homeostase do Telômero , Telômero , Adulto , Humanos , Bases de Dados Factuais
6.
J Exp Zool A Ecol Integr Physiol ; 341(4): 338-344, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38258326

RESUMO

Telomere length and dynamics are commonly used biomarkers of somatic state, yet the role of telomeres underlying the aging process is still debated. Indeed, to date, empirical evidence for an association between age and telomere length is mixed. Here, we test if the age-dependency of the association between age and telomere length can provide a potential explanation for the reported inconsistencies across studies. To this end, we quantified telomere length by telomere restriction fragment analysis in two groups of Japanese quail (Coturnix japonica) that differed in their age distribution. One group consisted of young adults only, whereas the second group consisted of adults across a wide range of ages. In the young adults group, there was a highly significant negative association between telomere length and age, whereas no association between age and telomere length was found in the all-ages adults group. This difference between groups was not due to telomere length-dependent selective disappearance. Our results shows that the association between telomere length and age is age-dependent and suggest that the costs and benefits associated with telomere maintenance are dynamic across an individual's life course.


Assuntos
Coturnix , Homeostase do Telômero , Animais , Encurtamento do Telômero , Biomarcadores , Telômero
7.
Nucleic Acids Res ; 52(5): 2648-2671, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38180812

RESUMO

Telomerase-negative tumors maintain telomere length by alternative lengthening of telomeres (ALT), but the underlying mechanism behind ALT remains poorly understood. A proportion of aggressive neuroblastoma (NB), particularly relapsed tumors, are positive for ALT (ALT+), suggesting that a better dissection of the ALT mechanism could lead to novel therapeutic opportunities. TERRA, a long non-coding RNA (lncRNA) derived from telomere ends, localizes to telomeres in a R-loop-dependent manner and plays a crucial role in telomere maintenance. Here we present evidence that RNA modification at the N6 position of internal adenosine (m6A) in TERRA by the methyltransferase METTL3 is essential for telomere maintenance in ALT+ cells, and the loss of TERRA m6A/METTL3 results in telomere damage. We observed that m6A modification is abundant in R-loop enriched TERRA, and the m6A-mediated recruitment of hnRNPA2B1 to TERRA is critical for R-loop formation. Our findings suggest that m6A drives telomere targeting of TERRA via R-loops, and this m6A-mediated R-loop formation could be a widespread mechanism employed by other chromatin-interacting lncRNAs. Furthermore, treatment of ALT+ NB cells with a METTL3 inhibitor resulted in compromised telomere targeting of TERRA and accumulation of DNA damage at telomeres, indicating that METTL3 inhibition may represent a therapeutic approach for ALT+ NB.


Assuntos
Metiltransferases , Neuroblastoma , RNA Longo não Codificante , Humanos , Adenina/análogos & derivados , Metiltransferases/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Estruturas R-Loop , RNA Longo não Codificante/metabolismo , Telômero/genética , Homeostase do Telômero
8.
Cell Rep ; 43(1): 113656, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38194346

RESUMO

Cancer cells maintain telomeres by upregulating telomerase or alternative lengthening of telomeres (ALT) via homology-directed repair at telomeric DNA breaks. 8-Oxoguanine (8oxoG) is a highly prevalent endogenous DNA lesion in telomeric sequences, altering telomere structure and telomerase activity, but its impact on ALT is unclear. Here, we demonstrate that targeted 8oxoG formation at telomeres stimulates ALT activity and homologous recombination specifically in ALT cancer cells. Mechanistically, an acute 8oxoG induction increases replication stress, as evidenced by increased telomere fragility and ATR kinase activation at ALT telomeres. Furthermore, ALT cells are more sensitive to chronic telomeric 8oxoG damage than telomerase-positive cancer cells, consistent with increased 8oxoG-induced replication stress. However, telomeric 8oxoG production in G2 phase, when ALT telomere elongation occurs, impairs telomeric DNA synthesis. Our study demonstrates that a common oxidative base lesion has a dual role in regulating ALT depending on when the damage arises in the cell cycle.


Assuntos
Telomerase , Telomerase/metabolismo , Homeostase do Telômero , Telômero/metabolismo , Estresse Oxidativo , Guanina
9.
J Exp Biol ; 227(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230426

RESUMO

Telomeres, the repetitive DNA regions that protect the ends of chromosomes, and their shortening have been linked to key life history trade-offs among growth, reproduction and lifespan. In contrast to most endotherms, many ectotherms can compensate for telomere shortening throughout life by upregulation of telomerase in somatic tissues. However, during development, marked by rapid growth and an increased sensitivity to extrinsic factors, the upregulation of telomerase may be overwhelmed, resulting in long-term impacts on telomere dynamics. In ectotherms, one extrinsic factor that may play a particularly important role in development is temperature. Here, we investigated the influence of developmental temperature and sex on early-life telomere dynamics in an oviparous ectotherm, Lacerta agilis. While there was no effect of developmental temperature on telomere length at hatching, there were subsequent effects on telomere maintenance capacity, with individuals incubated at warm temperatures exhibiting less telomere maintenance compared with cool-incubated individuals. Telomere dynamics were also sexually dimorphic, with females having longer telomeres and greater telomere maintenance compared with males. We suggest that selection drives this sexual dimorphism in telomere maintenance, in which females maximise their lifetime reproductive success by investing in traits promoting longevity such as maintenance, while males invest in short-term reproductive gains through a polygynous mating behaviour. These early-life effects, therefore, have the potential to mediate life-long changes to life histories.


Assuntos
Lagartos , Telomerase , Humanos , Animais , Masculino , Feminino , Telomerase/genética , Longevidade/genética , Encurtamento do Telômero , Lagartos/metabolismo , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero
10.
Thorax ; 79(3): 274-278, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38238005

RESUMO

We investigated phenotypic leucocyte telomere length (LTL), genetically predicted LTL (gTL), and lung cancer risk among 371 890 participants, including 2829 incident cases, from the UK Biobank. Using multivariable Cox regression, we found dose-response relationships between longer phenotypic LTL (p-trendcontinuous=2.6×10-5), longer gTL predicted using a polygenic score with 130 genetic instruments (p-trendcontinuous=4.2×10-10), and overall lung cancer risk, particularly for adenocarcinoma. The associations were prominent among never smokers. Mendelian Randomization analyses supported causal associations between longer telomere length and lung cancer (HRper 1 SD gTL=1.87, 95% CI: 1.49 to 2.36, p=4.0×10-7), particularly adenocarcinoma (HRper 1 SD gTL=2.45, 95%CI: 1.69 to 3.57, p=6.5×10-6).


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Bancos de Espécimes Biológicos , Estudos Prospectivos , 60682 , Homeostase do Telômero/genética , Leucócitos , Telômero/genética
11.
Nat Commun ; 15(1): 82, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167290

RESUMO

Telomere fusions (TFs) can trigger the accumulation of oncogenic alterations leading to malignant transformation and drug resistance. Despite their relevance in tumour evolution, our understanding of the patterns and consequences of TFs in human cancers remains limited. Here, we characterize the rates and spectrum of somatic TFs across >30 cancer types using whole-genome sequencing data. TFs are pervasive in human tumours with rates varying markedly across and within cancer types. In addition to end-to-end fusions, we find patterns of TFs that we mechanistically link to the activity of the alternative lengthening of telomeres (ALT) pathway. We show that TFs can be detected in the blood of cancer patients, which enables cancer detection with high specificity and sensitivity even for early-stage tumours and cancers of high unmet clinical need. Overall, we report a genomic footprint that enables characterization of the telomere maintenance mechanism of tumours and liquid biopsy analysis.


Assuntos
Neoplasias , Telomerase , Humanos , Homeostase do Telômero/genética , Telomerase/genética , Telomerase/metabolismo , Neoplasias/genética , Telômero/genética , Telômero/metabolismo , Genômica
12.
J Clin Pathol ; 77(2): 82-86, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37890990

RESUMO

Telomere maintenance and elongation allows cells to gain replicative immortality and evade cellular senescence during cancer development. While most cancers use telomerase to maintain telomere lengths, a subset of cancers engage the alternative lengthening of telomeres (ALT) pathway for telomere maintenance. ALT is present in 5%-10% of all cancers, although the prevalence is dramatically higher in certain cancer types, including complex karyotype sarcomas, isocitrate dehydrogenase-mutant astrocytoma (WHO grade II-IV), pancreatic neuroendocrine tumours, neuroblastoma and chromophobe hepatocellular carcinomas. ALT is maintained through a homology-directed DNA repair mechanism. Resembling break-induced replication, this aberrant process results in dramatic cell-to-cell telomere length heterogeneity, widespread chromosomal instability and chronic replication stress. Additionally, ALT-positive cancers frequently harbour inactivating mutations in either chromatin remodelling proteins (ATRX, DAXX and H3F3A) or DNA damage repair factors (SMARCAL1 and SLX4IP). ALT can readily be detected in tissue by assessing the presence of unique molecular characteristics, such as large ultrabright nuclear telomeric foci or partially single-stranded telomeric DNA circles (C-circles). Importantly, ALT has been validated as a robust diagnostic and prognostic biomarker for certain cancer types and may even be exploited as a therapeutic target via small molecular inhibitors and/or synthetic lethality approaches.


Assuntos
Neoplasias , Telomerase , Humanos , Homeostase do Telômero , Proteína Nuclear Ligada ao X/genética , Telomerase/genética , Telômero/genética , Telômero/metabolismo , Neoplasias/genética , DNA Helicases/genética , Proteínas de Transporte
13.
Chromosoma ; 133(1): 15-36, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37581649

RESUMO

Genome stability is key for healthy cells in healthy organisms, and deregulated maintenance of genome integrity is a hallmark of aging and of age-associated diseases including cancer and neurodegeneration. To maintain a stable genome, genome surveillance and repair pathways are closely intertwined with cell cycle regulation and with DNA transactions that occur during transcription and DNA replication. Coordination of these processes across different time and length scales involves dynamic changes of chromatin topology, clustering of fragile genomic regions and repair factors into nuclear repair centers, mobilization of the nuclear cytoskeleton, and activation of cell cycle checkpoints. Here, we provide a general overview of cell cycle regulation and of the processes involved in genome duplication in human cells, followed by an introduction to replication stress and to the cellular responses elicited by perturbed DNA synthesis. We discuss fragile genomic regions that experience high levels of replication stress, with a particular focus on telomere fragility caused by replication stress at the ends of linear chromosomes. Using alternative lengthening of telomeres (ALT) in cancer cells and ALT-associated PML bodies (APBs) as examples of replication stress-associated clustered DNA damage, we discuss compartmentalization of DNA repair reactions and the role of protein properties implicated in phase separation. Finally, we highlight emerging connections between DNA repair and mechanobiology and discuss how biomolecular condensates, components of the nuclear cytoskeleton, and interfaces between membrane-bound organelles and membraneless macromolecular condensates may cooperate to coordinate genome maintenance in space and time.


Assuntos
Replicação do DNA , Homeostase do Telômero , Humanos , Reparo do DNA , DNA/metabolismo , Dano ao DNA , Telômero/metabolismo
14.
Gen Comp Endocrinol ; 346: 114419, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38040384

RESUMO

After a Telomere Lengthening in juvenile stage, a progressive telomere shortening occurs with age despite higher telomerase level. Telomere Length (TL) may also reflect past physiological state such as a chronic chemical stress. Several studies have revealed a correlation between TL, ageing and/or sex in vertebrates, including teleosts; however, the patterns of telomere dynamics with telomerase mRNA expression, sex, lifespan or chemical stress in teleosts are unclear. The first aim of this study is to verify if telomere length is age and sex-dependent. The second aim is to consider if TL is a useful indicator of stress response in European long-snouted seahorse, Hippocampus guttulatus, an ectothermic and non-model system. We showed that after telomere lengthening during the juvenile stage, a telomeric attrition became significant in sexually mature individuals (p = 0.042). TL decreased in older seahorses despite the presence of somatic telomerase mRNA expression at all life stages studied. There was no difference in TL between males and females, but telomerase mRNA expression was consistently higher in females than males. Exposure to EE2 had no effect on TL in young seahorses, but was correlated with a significant increase in telomerase mRNA expression and various physiological disruptions. Here, a growth retardation of -10 % for body length (p = 0.016) and approximately -45 % for mass (p = 0.001) compared to healthy juvenile seahorses was observed. Our data suggest that telomere dynamics alone should not be used as a marker of EE2 exposure in juvenile seahorses.


Assuntos
Smegmamorpha , Telomerase , Humanos , Masculino , Animais , Feminino , Idoso , Telomerase/genética , Telomerase/metabolismo , Smegmamorpha/genética , Smegmamorpha/metabolismo , Homeostase do Telômero , Telômero/genética , Telômero/metabolismo , RNA Mensageiro
15.
Artigo em Inglês | MEDLINE | ID: mdl-38134301

RESUMO

Telomere shortening is an important sign and driving factor of aging, but its association mechanisms and causal effects with other aging-related biochemical hallmarks are largely unknown. This study first performed comprehensive genetic analyses (eg, shared genetic analysis, pleiotropic analysis, and gene enrichment analysis) to detect the underlying molecular mechanisms for the associations between telomere length (TL) and aging-related biochemical hallmarks. Then, further bidirectional Mendelian randomization (MR) analyses investigated the causal effects between TL and other biochemical hallmarks. The genetic correlations were negative between TL and growth differentiation factor-15 (GDF15) (p = .024), C-reactive protein (p = .007), hemoglobin A1c (p = .007), and red blood cell (RBC) (p = .022), but positive between TL and insulin-like growth factor 1 (IGF-1) (p = .002) and white blood cell counts (p = .007). The increased TL has causal effects on the low levels of GDF15 (p = 3.73E-06), sex hormone binding globulin (p = 6.30E-06), testosterone (p = 5.56E-07), fasting insulin (p = 2.67E-05), and RBC (p = 1.54E-05), but the higher levels of IGF-1 (p = 3.24E-07). In conclusion, the observed phenotypic correlations between TL and aging-related biochemical hallmarks may arise from a combination of shared genetic components and causal effects. Telomere length is regarded as a driving hallmark for aging-related biochemical hallmarks.


Assuntos
Fator de Crescimento Insulin-Like I , Homeostase do Telômero , Homeostase do Telômero/genética , Fator de Crescimento Insulin-Like I/genética , Encurtamento do Telômero/genética , Telômero/genética , Estudo de Associação Genômica Ampla
16.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069153

RESUMO

Telomeres are nucleoprotein complexes that cap the ends of eukaryotic linear chromosomes. Telomeric DNA is bound by shelterin protein complex to prevent telomeric chromosome ends from being recognized as damaged sites for abnormal repair. To overcome the end replication problem, cancer cells mostly preserve their telomeres by reactivating telomerase, but a minority (10-15%) of cancer cells use a homologous recombination-based pathway called alternative lengthening of telomeres (ALT). Recent studies have found that shelterin components play an important role in the ALT mechanism. The binding of TRF1, TRF2, and RAP1 to telomeres attenuates ALT activation, while the maintenance of ALT telomere requires TRF1 and TRF2. POT1 and TPP1 can also influence the occurrence of ALT. The elucidation of how shelterin regulates the initiation of ALT remains elusive. This review presents a comprehensive overview of the current findings on the regulation of ALT by shelterin components, aiming to enhance the insight into the altered functions of shelterin components in ALT cells and to identify potential targets for the treatment of ALT tumor cells.


Assuntos
Telomerase , Proteínas de Ligação a Telômeros , Proteínas de Ligação a Telômeros/metabolismo , Complexo Shelterina , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero , Telomerase/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas
17.
Biochemistry (Mosc) ; 88(11): 1704-1718, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38105192

RESUMO

The science of telomeres and telomerase has made tremendous progress in recent decades. In this review, we consider it first in a historical context (the Carrel-Hayflick-Olovnikov-Blackburn chain of discoveries) and then review current knowledge on the telomere structure and dynamics in norm and pathology. Central to the review are consequences of the telomere shortening, including telomere position effects, DNA damage signaling, and increased genetic instability. Cell senescence and role of telomere length in its development are discussed separately. Therapeutic aspects and risks of telomere lengthening methods including use of telomerase and other approaches are also discussed.


Assuntos
Telomerase , Telomerase/genética , Telomerase/metabolismo , Senescência Celular/genética , Homeostase do Telômero , Telômero/genética , Telômero/metabolismo
18.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139024

RESUMO

The analysis of telomere length is an important component of many studies aiming to characterize the role of telomere maintenance mechanisms in cellular lifespan, disease, or in general chromosome protection and DNA replication pathways. Several powerful methods to accurately measure the telomere length from Southern blots have been developed, but their utility for large-scale genomic studies has not been previously evaluated. Here, we performed a comparative analysis of two recently developed programs, TeloTool and WALTER, for the extraction of mean telomere length values from Southern blots. Using both software packages, we measured the telomere length in two extensive experimental datasets for the model plant Arabidopsis thaliana, consisting of 537 natural accessions and 65 T-DNA (transfer DNA for insertion mutagenesis) mutant lines in the reference Columbia (Col-0) genotype background. We report that TeloTool substantially overestimates the telomere length in comparison to WALTER, especially for values over 4500 bp. Importantly, the TeloTool- and WALTER-calculated telomere length values correlate the most in the 2100-3500 bp range, suggesting that telomeres in this size interval can be estimated by both programs equally well. We further show that genome-wide association studies using datasets from both telomere length analysis tools can detect the most significant SNP candidates equally well. However, GWAS analysis with the WALTER dataset consistently detects fewer significant SNPs than analysis with the TeloTool dataset, regardless of the GWAS method used. These results imply that the telomere length data generated by WALTER may represent a more stringent approach to GWAS and SNP selection for the downstream molecular screening of candidate genes. Overall, our work reveals the unanticipated impact of the telomere length analysis method on the outcomes of large-scale genomic screens.


Assuntos
Estudo de Associação Genômica Ampla , Telomerase , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero , Southern Blotting , Genômica , Telomerase/metabolismo
19.
Biochem Soc Trans ; 51(6): 2093-2101, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38108475

RESUMO

Telomerase is a complex ribonucleoprotein scaffolded by the telomerase RNA (TR). Telomere lengthening by telomerase is essential to maintain the proliferative potential of stem cells and germ cells, and telomerase is inappropriately activated in the majority of cancers. Assembly of TR with its 12 protein co-factors and the maturation of the 5'- and 3'-ends of TR have been the focus of intense research efforts over the past two decades. High-resolution Cryo-EM structures of human telomerase, high-throughput sequencing of the 3' end of TR, and live cell imaging of various telomerase components have significantly advanced our understanding of the molecular mechanisms that govern telomerase biogenesis, yet many important questions remain unaddressed. In this review, we will summarize these recent advances and highlight the remaining key questions with the ultimate goal of targeting telomerase assembly to suppress telomere maintenance in cancer cells or to promote telomerase activity in patients affected by telomere shortening disorders.


Assuntos
Neoplasias , Telomerase , Humanos , Telomerase/metabolismo , Telômero/metabolismo , Ribonucleoproteínas/genética , Homeostase do Telômero
20.
Int J Mol Sci ; 24(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37958962

RESUMO

The maintenance of genome integrity through generations is largely determined by the stability of telomeres. Increasing evidence suggests that telomere dysfunction may trigger changes in cell fate, independently of telomere length. Telomeric multiple tandem repeats are potentially highly recombinogenic. Heterochromatin formation, transcriptional repression, the suppression of homologous recombination and chromosome end protection are all required for telomere stability. Genetic and epigenetic defects affecting telomere homeostasis may cause length-independent internal telomeric DNA damage. Growing evidence, including that based on Drosophila research, points to a telomere checkpoint mechanism that coordinates cell fate with telomere state. According to this scenario, telomeres, irrespective of their length, serve as a primary sensor of genome instability that is capable of triggering cell death or developmental arrest. Telomeric factors released from shortened or dysfunctional telomeres are thought to mediate these processes. Here, we discuss a novel signaling role for telomeric RNAs in cell fate and early development. Telomere checkpoint ensures genome stability in multicellular organisms but aggravates the aging process, promoting the accumulation of damaged and senescent cells.


Assuntos
RNA , Homeostase do Telômero , Animais , RNA/metabolismo , Drosophila/genética , Envelhecimento/genética , Telômero/genética , Instabilidade Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...